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Introduction

The linear programs considered here are of the form:

Maximize (c,x)
(LP) subject to
a$Ax b
where A is of full row rank, snd (LI’) is feasihlo with bounded optimal solu-
tions.

The main result, equation (24), is an explicit representation of the
general optimal solution of (LP), in terms of a generalized inverse of A-l/.
This explicit solution of (LP) -explicit in the sense that A-lb is an
explicit solution of Ax = b - has obvious theoretical (and possibly computa-
tional) advantages over the well known iterative methods of linear
programming, e.g. [5], [8].

The results are illustrated by a simple example, and extensions to

general linear programs arc discussed,

Preliminaries and notations

We denote by:

n : :
R™ the n-dimensional real vector space

For any two vectors x,y in Rn:

x 2y denotes xiZyi (i=1l...,n)

v For other applications of generalized inverses in linear programming
see [14], [ 7] and (6].

T
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For any subspace L of R™:
L ! denotes the orthogonal complement of L
PL denotes the perpendicular projection on L
For any mxn real matrix A:
AT ~-- the transpose of A
R(A) -- the range space of A
N(A) -- the null space of A.

For the fixed mxn real matrix A consider the 4 matrix equations:

(1) AXA = A
(2) XAX = X

(3) ax)T= ax
(4) xa)T= xa

We denote by A {i,j,...,k} the set of nxm real matrices X
satisfying equations (i), (j),...,(k), (1=s4i,j,...,k=4). These sets
Afi,j,..., &k}, (1£4,j,...,k £4), are nonempty because A {1,2,3,4} is
nonempty, e.g. [13].

A matrix Xe A {i,j,...,k} iscalledan {i,j, ..., k] - g.i.

(generalized inverse) of A. The {1,2,3,4} - g.i. of A is unique, and

is the weil known Moore-Penrose generalized inverse , e.g. [13], [12],

denoted by At . For some applications a weaker g.i. will do, e.g.
{37, [4], [11] and [10]. Thus for solving linear equations (and for
the purpose of this paper) {1} - g.i's are sufficient, as shown by the

following:

Lemma 1 ([3], [13]): The linear equations

(5) Ax =b

are solvable iff for any Te A {1}




= b=

(6) ATb =b,

in which case the general solution of (5) is:

(7) x=Tb+ (I- TA)y, y arbitrary ]

The set A{1} is represented in terms of one of its elements as follows:

Lemma 2 ([3]): Let R be any {1} - g.i. of A. Then

(8) A{l} = {RAR + Y - RAYAR : Y arbitrary

nxm real matrix }

[y

Projections associated with g.i's are given in:

Lemma 3 ([1]) :

(a) ¥ SeA{1,3) then

(9) AS = pR(A)

(b) ¥ TeA({1,2,4) then

(10) TA = P
R(aT)

A recipe for computing a {1} - g.i. and for constructing a basis of
N(A) is given in:

Lemma 4: Let A be an mxn real matrix of rank r » and let E be a

nonsingular mxm real matrix sach that:
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1 f A
(11) EA = |-cccmemmccdema e et P
@)
(m-r)xn
where P is a permutation matrix.
Conclusions:
(a) Let E be partiticned
E, , E
(12) E = (--EIL-:-_- 12 )
21 22 where Ell is rxr
then the nxm matrix
E. « E
(13) T =pTL (----‘-‘--l----ll"-)
(n-r) x m
is a {1,2} - inverse of A .
(b) The columns of the nx(n-r) matrix

(14) N = pT(--‘_é-_)
In-r

form a basis of N(A).

Proof:

(a) Consider the nxn nonsingular matrix

1 |
g r | =4 )
(15) F-P(O =

From (11), (15) and PPT =1 we get

or




I, 0
(16) A=g} (---5; ..... ) 7l

Now the matrix

(17) T

H

5]
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O
O! o
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]

isa {1,2} - g.i. of A, as shown by substituting (16) and (17) in (1) and 2) .
Substituting (12) and (15) in (17) we get

- - - ool —m .- - ey we e an as w on
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which proves (13),

(b) Obvious {rom (1l) and the facts : PPT =1 and E nonsingular. D |
For other results and references on {1} - g.i's see [4], [10]
and [1].

Results:

Consider the linear programming problem:

(LP) Maximize (c,x)
subject to
(18) aSAxSb,
for given A = (aij) , a = (ai) » b =(bi), ¢ = (Cj)

i=1...,m; i=l...,n),

| and assume:
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Assumption 1: (LP) is feasible, i.e.

(19) S={xeR":a3 AxZb}/ g
The following properties of S are obvious:

Lemma 5: If (19) then

(20) S=S+NA)={x+y:x¢eS, ye NA)}

and the set

S={P . x: x¢S} is bounded.

(21) P T
R(A") R(A")

The case when (LP) has a finite maximum is characterized in:

Lemma 6: (LP) has a bounded optimal solution iff

(22) c L N(A)

Proof: If: From (22) and the fact

N(A) = R(aT)*

it follows that

{(c,x) :xe S} ={(c,x):xe P TS}
R(A7)

and is a bounded interval, since (21) is a bounded set.

Only if: Suppose Pyia) © £ 0. Then the interval

{(c,x):x¢e S}
is the entire real line, by (20)

We make now 2 additional assumptions:
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Assumption 2: (LP) has a bounded optimal solution, i, e. (22) holds.

A ssumption 3: The matrix A is of full row rank:

(23) rank A =m
An explicit representation of the general optimal solution of (LP) is now given:

Theorem: Let (LP) satisfy assumptions 1,2 and 3, and let the nxm matrix

T with columns (t,t : ,tm) bea {1} - g.i. of A. Then the optimal

2' ..
solutions of (LLP) form the manifold:

(24) x=X ta, + T tb + I ¢t (0.b,+(1-26.)a,)+ N(A)
. il ii . iVii i’ 7
iel_ 1eI+ 1610
where
I ={i: (c,t) <0 }
(25) I ={i:(c,t)>0]
10= [i:(c,ti)ro ]
and 0<98,=1, iel

Proof: From (23) it follows that

R(A) = R™

so that for any z in R™ we have

(26) z=Ax
where
(27) x =Tz + N(A), by lemma 1.

Substituting (26), (27) in (LP) we conclude from (22) that (LP) is
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equivalent to the following linear program over a parallelopiped:

Maximize (¢, T z)

(LPP)
subject to
(28) aszsh
whose optimal solution is obviously:
a; iel_
z, = bi ieI+
ei bi +(1- Bi)ai 1eIo
& :
for any 0= Bi s1 i 16:10 F

From (27) and (29) it follows that the manifold (24) is the set of

optimal solutions of (LP). . D

Remark: It can be shown directly that the set (24) is independent of the
particular {1} - g. i, used in its definition. We need:

Lemma 7: Let A be an mxn matrix of rank m , and let T be any

{1} - g.i. of A. Then

(30) T=AY 4w

where W is a matrix whose columns lie in N(A).

Proof: Lemma 2, with R =A', the unique {1,2,3,4]) - g.i. of A, gives:

(31) Af1)=ataat +vy-atavaa®, v arvitrary

=aT+p Y arbitrary

N(A)Y )
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This follows from A*aa* - a* by (2),

AA =pR(A) » by (9),

I , since rank A =m

and I-A'A =1-P T » by (10},
R(A™)
Now (30) follows from (31) with W = PN(A) Y. 0

From lemma 7 and (22) it follows that the sets I_, I+. Io defined
by (25) and the general solution (24) are independent of the {1} - g.i. used

in the theorem.

Example:
The problem, of class (LP) , is:
(32) Maximize 2x1 "Xy - Xy + 3x4
subject to:
Ole-i-ZxZ-x3 <1
3= X, + Xy X4 0

IA

IA
W

3 2x. +x, - 3x., +x

1 2 3 4

We use lemma 4 to compute a {1} - g.i. of

1 2 -1 0
A=1-1 0 1 -1
2 1 -3 1

by diagonalizing the m x (n + m) matrix

A(o) = (A, Im)
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(0) 2 -1 o0 1 0 0 .
A -1 0 1 -1 0o 1 0 pivots are
21 -3 1 0 0 1 circled
(1) 1 2 -1 0 1 0 o0
A 0@ o0-1 1 1 o0
0-3 -1 1 |-2 0 1
1 0 -1 1 0 -5/2-1
al® . 01 0-1/2| 1/2 1/2 0
0 0 (-2 |-1/2-3/2-1
1 0 0o 3/2| 1/2-5/2-1
a®) 01 0 -1/2] 1/2 1/2 0
001 V2 1/2-3/2-1

)

Assumption 3 is satisfied if the last matrix A(m is of the form

(m)

A =((Im.A)P|E)

Indeed from A(3) we read

A= (-gg) P=1 , E=

and by (14} it follows that N(A) is spanned by the vector

-5/2

< /2

(33)

-3/2
(34) N=|[ 1/2
-1/2
1
and that assumption 2 is satisfied for ¢ = | -1
-1
3
From (13) and (33) we geta {1} - g.i. of A:
/2 -5/2 -1
VAR VY] 0
(35) T=1 12 .32 -1
0 0 0

-1
0
-1

)
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for which

eTr=(2,-1,-1,3) [ V2 1Yz 0\ =(0, -4, -1)

0 0 0
so that
(36) 1_={2,3},1+=¢, 10={1] .
The general optimal solution of (32) is from (24), (34), (35) and
(36):
(37) X = 8, ::E -3 -?;’;22 +1 -:) +\ -:l!,‘.ﬁ,zz
/2 -3/2 -1 -1/2
0 0 0 |
with 0= 91 <1
and N arbitrary .

The optimal value of (c,x) = 11,

A different choice of pivots in A(i) (i=0,1,2) could result in
different matrices in (33) and (35), but the sets (36) and the manifold (37)
are unchanged.

Discussion

Linear programs arising in concrete applications are usually
feasible and possess bounded optimal solutions. Therefore assumptions
land 2 are not too restrictive.

Also any linear program with inequality constraints can be
rewritten as our problem (LP), by setting the missing : a, and bi as:
-M and +M respectively, where M > 0 is a sufficiently large number.
(f M appears in an optimal solution, theu the problem has unbounded

optimal solutions),
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The remaining assumption 3 is a true restriction on the scope
of our method. It is typically violated by linear programs of the form
Maximize (c, x)

subject to

(38)

>
%
nA
o

"y
o

which are rewritten as our (LP) :

Maximize (c,x)

(39) ('Lﬁe) = (Me) 1

where M >0 is sufficiently large, and 1

1
There are several ways of applying ou. method to problems (I.P)

without assuming A to have full row rank. One possibility is to partition
(LP) as follows:

Max (c,x)
(40) i S Atx S H
a2 § Azx § b2

where A1 is an rxn submatrix of the mxn matrix A and

(41) rank A'zrankA = r .

From (41) it follows that

(42) N(A) = N(aA})

and by lemma 6, problem (40) has a bounded optimal solution iff
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(43) c 1 N@aY .

The subproblem

(44) Max (c,x)
:«11 s Alx €b

1

thus satisfies our assumptions, and (24) can be used to obtain the manifold
1
(45) x + N(A)
of optimal solutions of (44).
Any vector in (45) which satisfies the remaining constraints

a2 s Azx 3 b2

of (40) is clearly an optimal solution of (40). In the absence of such a vector,
an optimal solution of (40) can be found in a finite number of iterations, where
at each iteration A1 is changed by one row in an obvious manner. Our
method may thus serve as a start for a dual simpiex method.

Another possibility is to partition (LP) into k subproblems

Max (c,x))

(46. ) al s ald 53! (i=1...,k)

where each subproblem satisfies our assumptions 1 and 3. Since
assumption 2 is assumed for (LP), we solve (46. i) by (24) as if

€l N(Ai) y 1i=1,...,ks The resulting optimal solutions are generally
different, but may be forced to coincide in a finite number of iterations of
the decomposition method of Dantzig-Wolfe [ 9] . These results are

containred in [15].
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